
Scripting for Cyber
Defense
Competitions

What is a script?

- Lots of commands, such that you don’t need to re-type them out

- Speeds up what you want to do

I’ll give this in the context of CCDC, but it applies to NCAE

Pros and Cons

Pros:

- Drastic speed up, especially the longer your script is

- Red team has scripts, so scripting is one of the few ways to beat them

Cons:

- Scripting takes WORK and KNOWLEDGE

- You probably need to cover every edge case

- ^^^ scoping

Python and Bash

These are two of the best languages for most of what you will want to do

Ease of use + functionality is the sweet spot

More advanced projects, C/C++ might be more useful, maybe Perl? But that’s

significantly more advanced

I’ll put our focus on bash because it’s better than Python for this

Bash

What is bash?

- Bourne Again SHell (sh is the Bourne SHell)

- echo $SHELL (bash, zsh, fish?)

- CLI + Programming Language

- Builtins vs commands, $PATH, tab complete, pipes, substitution,

arithmetic, and all kinds of other cool features

Crash Course

shebang

Every file should start with a shebang:

#!<interpreter>

#!/bin/bash

#!/usr/bin/env bash - this is viewed as “best”

Variables

You can declare and use variables in bash

- export VAR=1 - usable during the whole session

- VAR=1 - just during that process

- echo $VAR - use the variable

Data types:

- VAR=14
- VAR=“some string”
- VAR=(“this” “is” “an” “array”)

Spaces matter

Functions
function get_input_string {

read -r -p "$1" input

 echo "$input"

}

function print_banner {

echo “#### Welcome! ###”

}

print_banner

input=$(get_input_string "Enter input: ")

echo $input

- Defined with function
- Local variables are possible

- Called using just the function name

(no parenthesis)

- Arguments space separated

Logic Flow
while [$done != “true”]; do

input=$(get_input_string “> “)

if [$input == “”]; then

done=“true”

elif [$input == “train”]; then

sl

else

echo -n “You said: ”

echo $input

fi

done

- Remember, spaces matter

- Conditions are in brackets

- Must wrap in do:done, if:fi,

case:esac, etc

Useful tricks

- $netid=$(cat /home/blackteam/users.txt | grep $username
| cut -d‘ ’ -f1)

- Wildcards: ?, *, [] (range), {} (set), ##
- Regex with grep (learn it, it’s useful I promise)

- $_ last argument of last single command run in foreground after expansion

- Arguments:
- $@ either each argument as a string (in quotes), or arguments split by IFS

- $* either a string of ALL arguments, IFS separated (in quotes), or same as above

- $1 argument number 1, etc

- ${} - auto-expand variables inside

- > < - output and input redirects: 2>/dev/null, fd are also useful to know

- envs are useful

- sudo !! - reruns the last command with sudo

Learn by doing

If you want to learn bash, not just use it, go write a couple things with it.

You no longer need it for NCAE, but what could improve your QoL? Update

your .bashrc?

https://github.com/BYU-CCDC/public-ccdc-resources/blob/main/linux

https://github.com/BYU-CCDC/public-ccdc-resources/blob/main/linux

