Flask

NCAE

Qutline

Introduction to Flask webservers
Flask + SQL

Flask templating

Common Flask/Python vulns

Introduction to Flask Servers

Example Code

pip3 install flask
(dependency)

Endpoint = function (like
hello_world())

Flask() objectis webserver,
app.run() starts
@app.route(“/”) = when
endpoint / is requested, run the
next defined function

from flask import Flask

app = Flask(__name)

@app.route(”/")

def hello world():

return "<p>Hello, World!</p>"

if name
app.run(debug=True, host='0.0.0.0", port=1337)

Flask vs. Werkzeug

Flask is a Python webserver

Relies on Python Werkzeug library (may see this mentioned in multiple places)
Mostly under the hood

Werkzeug also provides simple HTTP server along with library

Note - Django is another common Python webserver

Flask Features

e You can specify valid HTTP methods for each endpoint

e You can have variable paths, like below, and that variable is passed in as
function argument

e You can add extra decorators (like token_required) so that custom function is

ran before get_botnet_order
o These functions usually enforce authentication, such as checking that a session cookie is valid

@app.route('/api/botnet-orders/<int:order id>', methods=['GET'])

@token_requ1red
f get botnet order(session data, order id):

from flask import Flask

Flask Features _
app = Flask(_name)

@app .before request
e Also a genericwaytoruna def before request func():

function before or after EVERY print(“before_request executing!”)

endpoint

@app.after request
- after_request func(response):

print("after request executing!")
return response

@app.route(”/")
F index():
print(“"Index running!™)

if name " main_ ":
app.run()

from flask import Flask

F | as k B | ue p Fl ntS from example__blueprlnt import example blueprint

app = Flask(__name)
app.register blueprint(example blueprint)

e [f you have MANY endpoints, you
get a LARGE server.py file

e Blueprints were added to allow for
splitting code between files &
organize

e Bottom code snippet is saved in
-/example_blueprint.py |

example blueprint = Blueprint('example blueprint’', name)

@example blueprint.route('/")
> index():
return "This is an example app”

Flask Requests and Responses

@app.route(’/getpost’, methods=['GET'])
ef getpost():

e Endpoint functions can access
HTTP request data through the
request variable postid = request.args[“id"]

o This includes headers, GET parameters,
POST parameters, cookies, etc.

e Endpoints send responses as the

@app.route(’'/flag’, methods=["POS
return value lef main():

e You can return a string, or create a resp = make_response(“Nope")
: resp.status code = 401
Response() object and set

attributes for more control

Flask + SQL

SQLite

Like any webserver, Flask can use any DBMS (MySQL, PostgreSQL, etc.)
SQLite is commonly used

SQLite is not a service, all the data is stored in a file

Connect: conn = sqlite3.connect('local.db")

Cursor: cur = con.cursor()

Run query: cur .execute('CREATE TABLE ..")

Commit: conn.commit () (only when making changes)

Get SELECT data: rows = cur.fetchall()

Preventing SQL Injection

Vulnerable

e db.exec('SELECT * FROM users WHERE userId=' +input_id+ ';’);
o db.exec(f'SELECT * FROM users WHERE userId={input_id};’);

e db.exec('SELECT * FROM users WHERE userId=%s;’ % input_id);
Safe

e db.exec('SELECT * FROM users WHERE userId=%s;’, (input_id,));

Flask Templating

Templating

e POV -you’re a dev using Flask and want to render HTML pages, how??

e Use Jinja2 templating engine for both static HTML pages and dynamic HTML
pages

e Static - render_template(‘page.html’) (page.html must be located in
./templates/page.html folder)

e Dynamic - render_template(‘page.html’, user=request.json()[‘user’])
o Inside page.html, you’ll see code like {{ user }} where data is pasted in
o Jinja2 is safe from XSS by default unless it uses {{ user | safe }}, thenit DOESN'T ESCAPE

e Other methods (hard-coded HTML, opening/returning files) can be unsafe

Server-Side Template Injection

e Since dynamic HTML pages contain code like {{ user }} where user is an
actual Python variable, can be dangerous

Never let user-controlled data be treated as template

Example 1- render_template_string(user_input)

Example 2 - modify a file, then render_template(‘that_file.html’)
Allows attacker to run arbitrary Python and achieve RCE

Common Flask/Python Vulns

Flask Debug Mode

app.run(debug=True) is BAD
Verbose error messages (not basic 500 Internal Server messages)
Error messages leak source code (BAD)

Opens up /console endpoint
o 9 digit pin allows anyone to run arbitrary Python (RCE)
o Well-known method of obtaining pin using LFI (link)

https://book.hacktricks.xyz/network-services-pentesting/pentesting-web/werkzeug

POST Parameter Data Types

paraml = request.json()[‘paraml’]

param1 could be boolean, string, integer, array, or object
Unexpected data type leads to unexpected behavior

Check type with isinstance(request.json()[‘param1’], str)
Note - request.form[‘param1’] | believe is always string

Flask Cookies

e Flask has built-in session cookies that use cookie name session by default
e Cookies are made up of 3 parts - 1x base64-encoded JSON section + 2x
signature pieces, split up by periods
o eyJsb2dnZWRfaW4iOmZhbHN1fQ.XDuWxQ.E2Pyb6x3w-NODuf1HoGnZOEpbHS
e Signature is verified using a secret, initialized as app.secret_key =
‘<secret>' (link)
e |[f secretis not random/guessable, you can forge session cookies (link)
e JWT is not Python- or Flask-specific, but commonly used

e Similar format, but 2x base64-encoded JSON sections + 1x signature piece

o eyJhbGci0iJIUzITNiIsInRScCI6IkpXVCJ9.eyJzdWIiOiIxMjMONTY30DkwIiwibmFtZSI6IkpvaG4g
RG91IiwiaWFOIjoxNTE2MjMSMDIyfQ.ST1KxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQsswSc

e |[f you see this, ensure secret is random + consult HackTricks

https://testdriven.io/blog/flask-sessions/
https://book.hacktricks.xyz/network-services-pentesting/pentesting-web/flask
https://book.hacktricks.xyz/pentesting-web/hacking-jwt-json-web-tokens

Path Traversal

Biggest unintuitive behavior that leads to path traversal
os.path.join() combines 2 strings

ie, os.path.join(‘/etc’, ‘shadow’) = ‘/etc/shadow’
HOWEVER

os.path.join(‘/etc’, ‘/tmp/hakt.txt’) = ‘/tmp/hakt.txt’
Absolute address ALWAYS takes precedence
No ../ necessary

Deserialization

Serializing objects allows you to transfer objects

JSON, YAML, XML, and CSV are all serialization formats

Python has unique one called pickle

Deserialization pickles is called unpickling

Unpickling arbitrary data can lead to RCE

If user-supplied pickles are ran through pickle.loads(), VERY BAD RCE

SSRF

e Assuming you already know what SSRF is
e The easiest way in Python to send arbitrary HTTP is using requests module

e Ifyousee import requests in any of the Python code files for flask server,
RED ALERT

e Check out where requests is being used

Other Flask Server Examples

e hitps://github.com/BYU-CSA/BYUCTF-2023/tree/main/urmombotnetdotnet.co
m

e htips://github.com/BYU-CSA/BYUCTF-2023/tree/main/notes

e https://github.com/BYU-CSA/old-ctf-challenges/tree/master/web/socialmedia2

e https://qgithub.com/BYU-CSA/old-ctf-challenges/tree/master/web/fragment

https://github.com/BYU-CSA/BYUCTF-2023/tree/main/urmombotnetdotnet.com
https://github.com/BYU-CSA/BYUCTF-2023/tree/main/urmombotnetdotnet.com
https://github.com/BYU-CSA/BYUCTF-2023/tree/main/notes
https://github.com/BYU-CSA/old-ctf-challenges/tree/master/web/socialmedia2
https://github.com/BYU-CSA/old-ctf-challenges/tree/master/web/fragment

