
Flask

NCAE



Outline

● Introduction to Flask webservers
● Flask + SQL
● Flask templating
● Common Flask/Python vulns



Introduction to Flask Servers



Example Code

● pip3 install flask 
(dependency)

● Endpoint → function (like 
hello_world() )

● Flask() object is webserver, 
app.run() starts

● @app.route(“/”) → when 
endpoint / is requested, run the 
next defined function



Flask vs. Werkzeug

● Flask is a Python webserver
● Relies on Python Werkzeug library (may see this mentioned in multiple places)
● Mostly under the hood
● Werkzeug also provides simple HTTP server along with library
● Note - Django is another common Python webserver



Flask Features

● You can specify valid HTTP methods for each endpoint
● You can have variable paths, like below, and that variable is passed in as 

function argument
● You can add extra decorators (like token_required) so that custom function is 

ran before get_botnet_order
○ These functions usually enforce authentication, such as checking that a session cookie is valid



Flask Features

● Also a generic way to run a 
function before or after EVERY 
endpoint



Flask Blueprints

● If you have MANY endpoints, you 
get a LARGE server.py file

● Blueprints were added to allow for 
splitting code between files & 
organize

● Bottom code snippet is saved in 
./example_blueprint.py



Flask Requests and Responses

● Endpoint functions can access 
HTTP request data through the 
request variable
○ This includes headers, GET parameters, 

POST parameters, cookies, etc.

● Endpoints send responses as the 
return value

● You can return a string, or create a 
Response() object and set 
attributes for more control



Flask + SQL



SQLite

● Like any webserver, Flask can use any DBMS (MySQL, PostgreSQL, etc.)
● SQLite is commonly used
● SQLite is not a service, all the data is stored in a file
● Connect: conn = sqlite3.connect('local.db')
● Cursor: cur = con.cursor()
● Run query: cur.execute('CREATE TABLE …')
● Commit: conn.commit() (only when making changes)
● Get SELECT data: rows = cur.fetchall()



Preventing SQL Injection

Vulnerable

● db.exec(‘SELECT * FROM users WHERE userId=’ +input_id+ ’;’);

● db.exec(f‘SELECT * FROM users WHERE userId={input_id};’);

● db.exec(‘SELECT * FROM users WHERE userId=%s;’ % input_id);

Safe

● db.exec(‘SELECT * FROM users WHERE userId=%s;’, (input_id,));



Flask Templating



Templating

● POV - you’re a dev using Flask and want to render HTML pages, how??
● Use Jinja2 templating engine for both static HTML pages and dynamic HTML 

pages
● Static - render_template(‘page.html’) (page.html must be located in 

./templates/page.html folder)
● Dynamic - render_template(‘page.html’, user=request.json()[‘user’])

○ Inside page.html, you’ll see code like {{ user }} where data is pasted in
○ Jinja2 is safe from XSS by default unless it uses {{ user | safe }}, then it DOESN’T ESCAPE

● Other methods (hard-coded HTML, opening/returning files) can be unsafe



Server-Side Template Injection

● Since dynamic HTML pages contain code like {{ user }} where user is an 
actual Python variable, can be dangerous

● Never let user-controlled data be treated as template
● Example 1 - render_template_string(user_input)
● Example 2 - modify a file, then render_template(‘that_file.html’)
● Allows attacker to run arbitrary Python and achieve RCE



Common Flask/Python Vulns



Flask Debug Mode

● app.run(debug=True) is BAD
● Verbose error messages (not basic 500 Internal Server messages)
● Error messages leak source code (BAD)
● Opens up /console endpoint

○ 9 digit pin allows anyone to run arbitrary Python (RCE)
○ Well-known method of obtaining pin using LFI (link)

https://book.hacktricks.xyz/network-services-pentesting/pentesting-web/werkzeug


POST Parameter Data Types

● param1 = request.json()[‘param1’]
● param1 could be boolean, string, integer, array, or object
● Unexpected data type leads to unexpected behavior
● Check type with isinstance(request.json()[‘param1’], str)
● Note - request.form[‘param1’] I believe is always string



Flask Cookies

● Flask has built-in session cookies that use cookie name session by default
● Cookies are made up of 3 parts - 1x base64-encoded JSON section + 2x 

signature pieces, split up by periods
○ eyJsb2dnZWRfaW4iOmZhbHNlfQ.XDuWxQ.E2Pyb6x3w-NODuflHoGnZOEpbH8

● Signature is verified using a secret, initialized as app.secret_key = 
'<secret>' (link)

● If secret is not random/guessable, you can forge session cookies (link)
● JWT is not Python- or Flask-specific, but commonly used
● Similar format, but 2x base64-encoded JSON sections + 1x signature piece

○ eyJhbGciOiJIUzI1NiIsInR5cCI6IkpXVCJ9.eyJzdWIiOiIxMjM0NTY3ODkwIiwibmFtZSI6IkpvaG4g
RG9lIiwiaWF0IjoxNTE2MjM5MDIyfQ.SflKxwRJSMeKKF2QT4fwpMeJf36POk6yJV_adQssw5c

● If you see this, ensure secret is random + consult HackTricks

https://testdriven.io/blog/flask-sessions/
https://book.hacktricks.xyz/network-services-pentesting/pentesting-web/flask
https://book.hacktricks.xyz/pentesting-web/hacking-jwt-json-web-tokens


Path Traversal

● Biggest unintuitive behavior that leads to path traversal
● os.path.join() combines 2 strings
● ie, os.path.join(‘/etc’, ‘shadow’) = ‘/etc/shadow’
● HOWEVER
● os.path.join(‘/etc’, ‘/tmp/hakt.txt’) = ‘/tmp/hakt.txt’
● Absolute address ALWAYS takes precedence
● No ../ necessary



Deserialization

● Serializing objects allows you to transfer objects
● JSON, YAML, XML, and CSV are all serialization formats
● Python has unique one called pickle
● Deserialization pickles is called unpickling
● Unpickling arbitrary data can lead to RCE
● If user-supplied pickles are ran through pickle.loads(), VERY BAD RCE



SSRF

● Assuming you already know what SSRF is
● The easiest way in Python to send arbitrary HTTP is using requests module
● If you see import requests in any of the Python code files for flask server, 

RED ALERT
● Check out where requests is being used



Other Flask Server Examples

● https://github.com/BYU-CSA/BYUCTF-2023/tree/main/urmombotnetdotnet.co
m

● https://github.com/BYU-CSA/BYUCTF-2023/tree/main/notes 
● https://github.com/BYU-CSA/old-ctf-challenges/tree/master/web/socialmedia2
● https://github.com/BYU-CSA/old-ctf-challenges/tree/master/web/fragment 

https://github.com/BYU-CSA/BYUCTF-2023/tree/main/urmombotnetdotnet.com
https://github.com/BYU-CSA/BYUCTF-2023/tree/main/urmombotnetdotnet.com
https://github.com/BYU-CSA/BYUCTF-2023/tree/main/notes
https://github.com/BYU-CSA/old-ctf-challenges/tree/master/web/socialmedia2
https://github.com/BYU-CSA/old-ctf-challenges/tree/master/web/fragment

